A(2) adenosine receptors regulate CFTR through PKA and PLA(2).
نویسندگان
چکیده
We investigated adenosine (Ado) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. A(2B) Ado receptors were identified in Calu-3, IB-3-1, COS-7, and primary human airway cells. Ado elevated cAMP in Calu-3, IB-3-1, and COS-7 cells and activated protein kinase A-dependent halide efflux in Calu-3 cells. Ado promoted arachidonic acid release from Calu-3 cells, and phospholipase A(2) (PLA(2)) inhibition blocked Ado-activated halide efflux in Calu-3 and COS-7 cells expressing CFTR. Forskolin- and beta(2)-adrenergic receptor-stimulated efflux were not affected by the same treatment. Cytoplasmic PLA(2) (cPLA(2)) was identified in Calu-3, IB-3-1, and COS-7 cells, but cPLA(2) inhibition did not affect Ado-stimulated cAMP concentrations. In cftr(+) and cftr(-/-) mice, Ado stimulated nasal Cl(-) secretion that was CFTR dependent and sensitive to A(2) receptor and PLA(2) blockade. In COS-7 cells transiently expressing DeltaF508 CFTR, Ado activated halide efflux. Ado also activated G551D CFTR-dependent halide efflux when combined with arachidonic acid and phosphodiesterase inhibition. In conclusion, PLA(2) and protein kinase A both contribute to A(2) receptor activation of CFTR, and components of this signaling pathway can augment wild-type and mutant CFTR activity.
منابع مشابه
A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA.
It has been demonstrated previously that both the cystic fibrosis transmembrane conductance regulator (CFTR) and beta(2) adrenergic receptor (beta(2)AR) can bind ezrinradixinmoesin-binding phosphoprotein 50 (EBP50, also referred to as NHERF) through their PDZ motifs. Here, we show that beta(2) is the major adrenergic receptor isoform expressed in airway epithelia and that it colocalizes with CF...
متن کاملThe Formation of the cAMP/PKA-dependent Annexin 2-S100A10 Complex with CFTR Regulates CFTR Channel Function
Cystic fibrosis results from mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/PKA and ATP-regulated Cl channel. CFTR is increasingly recognized as a component of multi-protein complexes and although several inhibitory proteins to CFTR have been identified, protein complexes that stimulate CFTR function remain less well characterised. We report that annexin 2 (anx 2)...
متن کاملLocal regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium.
Regulation of cystic fibrosis transmembrane regulator (CFTR) and epithelial sodium channel (ENaC) in airway epithelia strongly influences the rate of mucociliary clearance (MCC) by determining the volume of airway surface liquid. MCC increases in response to stimuli originating on the airway surface, and CFTR and ENaC in airway epithelia appear to be regulated by local rather than systemic sign...
متن کاملCFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is me...
متن کاملThe formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function.
Cystic fibrosis results from mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/protein kinase A (PKA) and ATP-regulated Cl(-) channel. CFTR is increasingly recognized as a component of multiprotein complexes and although several inhibitory proteins to CFTR have been identified, protein complexes that stimulate CFTR function remain less well characterized. We report t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 1 شماره
صفحات -
تاریخ انتشار 2002